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Abstract

The finite element time domain (FETD) method is commonly used for transient simulation of electromagnetic wave
phenomena. Most practitioners consider FETD, when time integrated using the Newmark-Beta method, to be uncondi-
tionally stable when b P 0:25. Unlike the finite difference time domain (FDTD) ‘‘courant criterion’’, FETD-Newmark
has no limiting timestep above which the method exhibits exponential growth. However, herein the stability properties
of FETD-Newmark will be rigorously investigated by deducing the Jordan canonical form of the FETD-Newmark ampli-
fication matrix, and it will be demonstrated that the method does exhibit linear growth for certain field configurations.
These modes are none other than the pure-gradient fields associated with ‘‘late time instability’’. Though many practical
simulations are of short duration and will never observe a linearly growing gradient solution, it can be problematic for
simulations which require long time periods to be integrated. A correction scheme for eliminating this late time instability
shall be suggested, and numerical results will verify its performance.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The finite element time domain method [1], iterated using the Newmark method (FETD-Newmark), is use-
ful for analyzing transient electromagnetic wave interactions when geometry conforming discretization is
required. A single update can be characterized as a matrix–vector multiply of the state vector by an amplifi-
cation matrix A. If it has any eigenvalues outside the complex plane unit circle, then the state vector may grow
exponentially as repeated updates are applied. That is, unit circle boundedness is a necessary criterion for sta-
bility. Investigators have often presumed that FETD-Newmark is unconditionally stable by demonstrating
that, for a non-active domain, the amplification matrix has all eigenvalues on or within the unit circle [2,3].
Eigenvalues are strictly on the unit circle for non-dissapative domains. Unfortunately, unit circle boundedness
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is not a sufficient criterion for unconditional stability. If the amplification matrix is non-diagonalizable, there
may be other stability outcomes: in addition to ‘‘no growth’’ (stability) and exponential growth, a non-diag-
onalizable matrix can permit polynomial growth [4]. It will be shown herein that A is non-diagonalizable, lacks
a full set of linearly independent eigenvectors and possesses a non-diagonal Jordan canonical form which per-
mits linear growth for pure gradient fields. However, knowledge of the Jordan form of A will naturally lead to
a correction algorithm for removing gradient modes and preventing instability. The correction algorithm will
be demonstrated with a handful of numerical experiments.

2. The transformed semi-discrete wave equation

Consider the vector wave equation (40) for the electric field in a lossless, source free domain X.
r� l�1
r � r �~E

� �
þ 1

c2

o2

ot2
er
~E

� �
¼ 0: ð1Þ
When the electric field is expanded with E distinct Whitney-1 edge elements ~W i [5,6] and the residual is
weighted through Galerkin testing, a spatially-discrete time-continuous wave equation emerges
Seþ T
1

c2

o
2

ot2
e ¼ 0; ð2Þ

Sij ¼
Z

X
r� ~W i

� �
� l�1

r r� ~W j

� �
dv; i; j 2 ½1::E�; ð3Þ

Tij ¼
Z

X

~W i � er � ~W j dv; i; j 2 ½1::E�: ð4Þ
Here, E denotes the number of free edges in the FE mesh. Edges which lie on perfect electric conductor (PEC)
surfaces are not free, they cannot support a tangential electric field.

The boundary integral which emerges through integration by parts has been discarded, implying the surface
oX which bounds X is either PEC or PMC (perfect magnetic conductor). Constitutive parameters are assumed
time-invariant and non-dispersive, but are possibly inhomogeneous. The mass matrix T (4) is symmetric and
possesses a complete orthonormal set of eigenvectors such that T ¼ QKT QT and QTQ ¼ I. It is also positive
definite, which permits a rigorous definition of its ‘‘half power’’. Consistently pick the positive branch of the
square root function to produce a matrix T

1
2 which is symmetric positive definite (SPD), and therefore

invertible.
T
1
2 ¼ QðKT Þ

1
2QT: ð5Þ
Perform a change of variables through the matrix T
1
2 , creating a new field quantity ~e ¼ T

1
2e. Not surprisingly, ~e

satisfies its own semi-discrete wave equation involving a transformed stiffness matrix ~S ¼ ðT�1
2ÞSðT�1

2Þ and
transformed mass matrix ~T ¼ ðT�1

2ÞTðT�1
2Þ ¼ I. Throughout this document the tilde symbol will be used to

denote quantities associated with this transformed wave equation (6).
~S~eþ I
1

c2

o
2

ot2
~e ¼ 0: ð6Þ
The stiffness matrix ~S is positive semi-definite. Partition its eigenvectors into two disjoint subsets: electrostatic
eigenvectors ~sn which possess zero discrete curl (these reside in the nullspace of ~S, and are paired to zero eigen-
values) and electrodynamic eigenvectors ~dm (paired with nonzero eigenvalues denoted by km). Here, ~s denotes
‘‘static’’ ~d denotes ‘‘dynamic’’. Since ~S is symmetric, all eigenvectors can be picked orthonormal to one
another (even the electrostatic subset of vectors, which all share a common zero eigenvalue) [7].
~sT
i
~sj ¼ dij; ~dT

i
~dj ¼ dij; ~sT

n
~dm ¼ 0: ð7Þ
The number of electrostatic or gradient eigenvectors is N� 1, where N is the number of nodal electric scalar
potential degrees-of-freedom in the mesh (equipotential nodes connected by PEC surfaces are not indepen-
dent). Physically, samples of scalar electric potential at each free node provide a mechanism for generating
any electrostatic field via the discrete gradient operator (an idea to be exploited later). However, one node
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is presumed a reference or ground potential against which all other potentials are measured, reducing the rank
of electrostatic eigenvectors by one.

The spatially discrete system (6) is integrated in time using the Newmark-Beta method [8], with b = 0.25.
This process requires an implicit matrix solution every timestep, where the ‘‘next’’ field state ~ekþ1 is determined
from two previous field states, ~ek and ~ek�1
~Bkþ1~ekþ1 ¼ �~Bk~ek � ~Bk�1~ek�1; ð8Þ
where the ~Bi’s are E� E matrices defined by
~Bkþ1 ¼ ~Bk�1 ¼
1

4
ðcDtÞ2~Sþ I; ð9Þ

~Bk ¼
1

2
ðcDtÞ2~S� 2I: ð10Þ
Equivalently to (8), the entire scheme can be characterized as one matrix–vector multiply, with an amplifica-
tion matrix denoted ~A.
~ekþ1

~ek

� �
¼ � ~Bkþ1

� ��1 ~Bk � ~Bkþ1

� ��1 ~Bk�1

I 0

" #
~ek

~ek�1

� �
¼ ~A

~ek

~ek�1

� �
: ð11Þ
FETD-Newmark timestepping involves repeated multiplication by ~A, so the Jordan canonical form of ~A will
be deduced within the next two sections. Fortunately, the eigenspectrum of ~A can be constructed from the
eigenspectrum of ~S (which is known to have a full complement of linearly independent eigenvectors because
it is symmetric). However, these matrices are not the same size, ~A has twice as many rows and columns as ~S.
We must use each eigenvector of ~S to construct two eigenvectors for ~A.

3. Stable electrodynamic modes

This proof is inspired by [9], in which the authors use a similar strategy to prove stability of the finite inte-
gration technique (FIT). To begin, note that ~dm is an eigenvector of each ~Bi.
ð~Bk�1Þ~dm ¼
1

4
ðcDtÞ2km þ 1

� �
~dm; ð12Þ

ð~BkÞ~dm ¼
1

2
ðcDtÞ2km � 2

� �
~dm; ð13Þ

ð~Bkþ1Þ�1~dm ¼
1

4
ðcDtÞ2km þ 1

� ��1

~dm: ð14Þ
This step emphasizes the importance of the similarity transform: it requires that ~S and ~T are simultaneously
diagonalizable by the same set of eigenvectors ~dm. The easiest way to achieve this is to map either S or T to an
identity matrix, which is diagonalizable by any linearly independent basis. We cannot map S to an identity
matrix because it is singular, but we can map T because it is SPD.

Continuing, construct a 2E� 1 column vector denoted ~wm out of scaled copies of ~dm. The scalar parameter
am 2 C, am 6¼ 0 is a designable degree of freedom which modifies the direction that ~wm points. Because ~dm is an
eigenvector of each of the state matrices ~Bi, the effect of multiplying ~wm by ~A is straightforward.
~wm ¼
am

~dm

~dm

" #
; ~A~wm ¼

2�1
2ðcDtÞ2km

1þ1
4ðcDtÞ2km

� 1
am

� 	
am

~dm

am
~dm

2
4

3
5: ð15Þ
Remarkably, am can be picked such that ~wm is an eigenvector of ~A. Such an am would have to satisfy (16).
am ¼
2� 1

2
ðcDtÞ2km

1þ 1
4
ðcDtÞ2km

� 1

am
: ð16Þ
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When am satisfies (16), then ~wm is by definition an eigenvector because multiplication by ~A did not change its
direction (only its magnitude – which was stretched by a factor am). This quadratic expression has two roots,
retain both of them to construct two eigenpairs for ~A.
am;1 ¼
2� 1

2
ðcDtÞ2km þ j2

ffiffiffiffiffi
km

p
ðcDtÞ

2þ 1
2
ðcDtÞ2km

~wm;1 ¼
am;1

~dm

~dm

" #
; ð17Þ

am;2 ¼
2� 1

2
ðcDtÞ2km � j2

ffiffiffiffiffi
km

p
ðcDtÞ

2þ 1
2
ðcDtÞ2km

~wm;2 ¼
am;2

~dm

~dm

" #
: ð18Þ
It is easily verified that both am;1 and am;2 are both unitary phasors, so the necessary criterion of unitary eigen-
values is upheld. For ~A to be diagonalizable, linear independence of two eigenvectors ~wm;1 and ~wm;2 is required.
To show they are, consider the quantity g 2 C (19).
g ¼ ð~wm;1ÞH ð~wm;2Þ
j~wm;1k~wm;2j

¼ 1

2
þ

4þ 1
4
d4 � 6d2 � j4dþ j2d3

8þ 4d2 þ 1
2
d4

ð¼ cos hÞ; ð19Þ
where d ¼ cDt
ffiffiffiffiffi
km

p
.

If ~wm;1 and ~wm;2 are linearly dependent, then this quantity will be ±1. This is a geometric idea: two vectors
are dependent (collinear) if and only if they point in the same direction ðcos h ¼ 1Þ or point in opposite direc-
tions ðcos h ¼ �1Þ. It can be proven that g is bounded away from ±1, and the locus that g traces out in the
complex plane as d is varied continuously from 0.1 to 100 is depicted in Fig. 1. This corresponds to a wide
dynamic range in timesteps: roughly analogous to 10% of the FDTD [10] ‘‘courant limit’’ up to 100 times
the courant limit. Although ~wm;1 and ~wm;2 approach linear dependence in the limits as Dt shrinks to zero or
grows large without bound, these are not conditions encountered in practical FETD computations.

To generate the complete set of the electrodynamic eigenvectors of ~A, repeat this process for every remain-
ing ~dj of ~S. It is important to note that the two vectors ~wm;1 and ~wm;2 just constructed will be linearly indepen-
dent (orthogonal, in fact) from any other ~wj;1 and ~wj;2 constructed later. Use the orthogonality of the
generating vectors ~dm and ~dj (7) to show that ~wm;1 and ~wj;1 are orthogonal (20).
ð~wm;1ÞHð~wj;1Þ ¼ ða�m;1Þ � ðaj;1Þð~dmÞTð~djÞ þ ð~dmÞTð~djÞ ¼ 0: ð20Þ
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Fig. 1. Linear independence metric for ~wm;1 and ~wm;2.
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4. Electrostatic modes

Encouraged by the success thus far, the same construction process is applied to the electrostatic eigenvec-
tors ~sn of ~S. Define the column vector ~xn. As before, the scalar parameter bn is a designable degree of freedom
that modifies the direction of ~xn. Because ~sn is in the nullspace of ~S, the effect of multiplying ~xn by ~A is espe-
cially simple (21).
~xn ¼
bn~sn

~sn

� �
; ~A~xn ¼

2I �I

I 0

� �
~xn ¼

2� 1
bn

� 	
bn~sn

bn~sn

" #
: ð21Þ
For ~xn to be an eigenvector of ~A, bn should satisfy:
bn ¼ 2� 1

bn
or ðbnÞ

2 � 2bn þ 1 ¼ 0 ð22Þ
The discriminant of Eq. (22) is zero – only bn ¼ ej0 ¼ 1 is possible. Including the ~xn eigenvectors indicates the
ability of FETD to model any discrete electrostatic field. They are embedded into the amplification matrix
with unit eigenvalues: no growth, no phase change, and no decay. Updating does not alter them at all, which
is quite satisfying for physical intuition of how a static mode should be treated. However, there is cause for
alarm from a numerical viewpoint: we needed to construct two eigenvectors out of ~sn but have only made
one. A complete, linearly independent set of eigenvectors for ~A has not been found, so it cannot be claimed
that unitary eigenvalues imply unconditional stability. To proceed, hypothesize that ~A might not be a diago-
nalizable matrix, and consider a Jordan canonical form which possesses degenerate eigenvectors algebraic
multiplicity 2 but geometric multiplicity 1. Such a matrix can be constructed from 2 · 2 Jordan sub-blocks
~j and ‘‘generalized eigenvectors’’ ~xn and ~yn.
~j ¼
1 1

0 1

� �
; ð~A� kIÞ~xn ¼ 0; ð~A� kIÞ2~yn ¼ 0: ð23Þ
The generalized eigenvector ~yn must be linearly independent from ~xn and satisfy the second order eigenpair
statement (23) for k = 1. For the electrostatic eigenvector, note that ~A acted like a ‘‘block identity’’ matrix
in Eq. (21). This suggests it may behave like the 2 · 2 matrix ~a. This matrix has one repeated eigenvalue
and two linearly dependent eigenvectors, and its Jordan canonical form is given (24).
~a ¼
2 �1

1 0

� �
¼

1 1

1 0

� �
1 1

0 1

� �
1 1

1 0

� �� ��1

¼ ~v~j~v�1: ð24Þ
The first column of ~v resembles ~xn, and the second column suggests that ~yn might be ½~sn; 0�. Indeed, substitution
reveals that this vector satisfies the second order eigenpair statement (23), and clearly ~yn is linearly independent
from ~xn.
ð~A� kIÞ2~yn ¼
I �I

I �I

� �
I �I

I �I

� �
~sn

0

� �
¼

I �I

I �I

� �
~sn

~sn

� �
¼

0

0

� �
: ð25Þ
Reapplying this procedure to every electrostatic eigenvector ~sn of ~S gives a set of N� 1 irreducible Jordan
blocks. It is straightforward to prove that every ~xn, ~yn and ~wm;i that has been constructed is linearly indepen-
dent, the orthogonality of the eigenvectors of ~S is the key (7).
5. Jordan canonical form and linear instability

Combining previous results into the Jordan form ~A ¼ ~V~J~V�1 is straightforward. The Jordan matrix ~J has a
dynamic block with 2ðE�Nþ 1Þ ¼ 2M unitary phasor eigenvalues, and a static block with N� 1 irreduc-
ible Jordan subblocks ~j.
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~J ¼

a1 0

0 a�1

� �

. .
.

0
aM 0

0 a�M

� �
1 1

0 1

� �

0 . .
.

1 1

0 1

� �

2
66666666666666666664

3
77777777777777777775

: ð26Þ
The transformation matrix ~V contains all the conjugate pairs of stable electrodynamic modes (~w’s), all the sta-
ble electrostatic modes (~x’s) and the generalized eigenvectors (~y’s).
~V ¼ a1
~d1 a�1~d1 � � � aM

~dM a�M~dM

~d1
~d1 � � � ~dM

~dM

 !
~s1 ~s1 � � � ~sN � 1 ~sN�1

~s1 0 � � � ~sN�1 0

� �" #
: ð27Þ
If the initial state is composed only of ~w and ~x components, clearly no growth of the state vector is permitted
as these are all eigenvectors of ~A with unit-circle eigenvalues. Unfortunately, if the initial state has a ~y com-
ponent, a linearly growing gradient solution is permitted. This is consistent with practical observations of how
‘‘late-time instability’’ manifests itself in FETD simulations [11].
~A~yn ¼
2I �I

I 0

� �
~sn

0

� �
¼

2 ~sn

~sn

� �
¼ ~yn þ ~xn; ð28Þ

~A2~yn ¼
2I �I

I 0

� �
2sn

sn

� �
¼

3 ~sn

2 ~sn

� �
¼ ~yn þ 2~xn; ð29Þ

~Ak~yn ¼ ~yn þ k~xn: ð30Þ
Each multiplication by ~A will retain the ~yn component, and generate an additional ~xn component. Up to this
point, the analysis has been performed for the transformed amplification matrix ~A, but this is not the update
scheme implemented in practice. Rather, the time-integration procedure is applied directly to S and T yielding
the state matrices Bk�1, Bk and Bkþ1. They are combined into the conventional amplification matrix A (31).
ekþ1

ek

� �
¼ �ðBkþ1Þ�1

Bk �ðBkþ1Þ�1
Bk�1

I 0

" #
ek

ek�1

� �
¼ A

ek

ek�1

� �
; ð31Þ
where
Bk�1 ¼
1

4
ðcDtÞ2Sþ T ¼ T

1
2

� 	
~Bk�1 T

1
2

� 	
; ð32Þ

Bk ¼
1

2
ðcDtÞ2S� 2T ¼ T

1
2

� 	
~Bk T

1
2

� 	
; ð33Þ

Bkþ1 ¼
1

4
ðcDtÞ2Sþ T ¼ T

1
2

� 	
~Bkþ1 T

1
2

� 	
: ð34Þ
As noted above, each Bi matrix is can be equated to its ~Bi counterpart introduced previously (9), (10),
through the invertible matrix T

1
2. Invert both sides of (34) to find ðBkþ1Þ�1 (35).
Bkþ1ð Þ�1 ¼ T�
1
2

� 	
ð~Bkþ1Þ�1

T�
1
2

� 	
: ð35Þ
Using (32), (33) and (35), it is straightforward to show that the matrices ~A and A are similar through a trans-
formation matrix Z.
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Z~AZ�1 ¼ T�
1
2 0

0 T�
1
2

" #
� ~Bkþ1

� ��1 ~Bk �ð~Bkþ1Þ�1 ~Bk�1

I 0

" #
T

1
2 0

0 T
1
2

" #
: ð36Þ
Carry out the matrix–matrix multiplies, and insert I ¼ T�
1
2T

1
2 identity matrices where needed:
Z~AZ�1 ¼ �T�
1
2ð~Bkþ1Þ�1

T�
1
2T

1
2 ~BkT

1
2 �T�

1
2ð~Bkþ1Þ�1

T�
1
2T

1
2 ~Bk�1T

1
2

T�
1
2IT

1
2 0

" #
: ð37Þ
Identify each Bi from (32), (33) and (35), then identify A from (31).
Z~AZ�1 ¼ �ðBkþ1Þ�1
Bk �ðBkþ1Þ�1

Bk�1

I 0

" #
¼ A: ð38Þ
This similarity implies that ~A and A share the same Jordan block and their Jordan transformation matrices
(eigenvectors) are related through V ¼ Z~V. Similarity transformation preserves eigenvector linear indepen-
dence (unfortunately, it does not preserve orthogonality). Most importantly, if an initial state yn ¼ Z~yn is pre-
sumed, a linearly growing gradient mode xn ¼ Z~xn emerges.
Akyn ¼ yn þ kxn: ð39Þ

It must be stressed that this mode is not an artifact of the finite element procedure. The underlying continuum
vector wave equation supports a linear growth gradient solution, because it resides in the nullspace of both the
curl–curl operator and the second time derivative operator (40).
r� l�1
r � r � ðtrUÞ

� �
þ 1

c2

o2

ot2
erðtrUÞ ¼ 0: ð40Þ
In the continuum case this mode cannot be excited in a source free domain, it requires a growing electric
charge (thus a current) to support. However, in the discrete case exciting this mode is impossible to avoid:
the finite precision of floating point arithmetic or the residual error of an iterative solution technique (such
as conjugate gradients) will always allow a small spillover of energy into a y gradient field.

6. Provable stability vs. practical stability

Although the FETD-Newmark amplification matrix A is non-diagonalizable and permits linearly growing
states which are electrostatic (purely gradient) fields, this eigenspectrum analysis shows that multiplication by
A is closed for the stable electrodynamic and electrostatic spaces. That is, any pure-electrodynamic input
w ¼ Z~w yields a pure-electrodynamic output and the same is true for a stable electrostatic input x ¼ Z~x . Fur-
thermore, any ‘‘defective state’’ which contains a y component has no predecessor other than another defective
state. Assuming that the simulation starts out non-defective, and no y component is added deliberately, then
all y components are zero for all time and the system is proven stable. These assumptions are upheld in prac-
tical simulation: systems are initialized at rest and carefully implemented current sources do not generate new
gradient fields. So why does FETD exhibit instability?

The answer is that updating is inexact, which disrupts the closedness property of A. Most non-trivial sized
problems use conjugate gradient (CG) [12,13] for the implicit update (or another fast but approximate linear
solver), so the ‘‘next state’’ always has a residual error. Some of this error could be numerical energy delivered
to a y component. It will be kick-started orders of magnitude smaller than the desired electrodynamic solution,
but it will grow until it dominates the total energy in late time.

Even direct linear solvers are not immune, because round off error from inexact floating point arithmetic
will shift the desired solution out of pure-dynamic space and give it a small y component. Direct linear solu-
tion will probably exhibit stable behavior for a larger number of timesteps than iterative solution, because the
energy delivered into y eigenvectors will be governed by the floating point precision of the underlying hard-
ware, not the user defined CG tolerance (which is typically several orders of magnitude above machine pre-
cision). This is consistent with previous observations [14], and the upcoming numerical experiments. Exact
arithmetic (representing field samples as rational numbers with integer precision) should maintain stability
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indefinitely. However, the computational expense of such an FETD scheme is intractable for non-trivial
problems.

For many practical problems of short duration that are stepped with a highly accurate linear solver and
smart preconditioner, no gradient term will ever be observed. Using a stricter linear solver tolerance can push
the emergence of gradient field growth far ‘‘into the future’’, hence the name ‘‘late time instability’’ is appro-
priate. There are, however, some specific problems which require very long integration times. For example, a
large cavity with two resonant modes closely spaced in frequency would need a long true-time response to dis-
tinguish the two modes in the frequency domain.

Thinking more abstractly, if the FETD-Newmark method is not ‘‘late time stabilized’’ then essentially it is
not convergent. For example, suppose a non-dissipative cavity problem is investigated and global h-refinement
(halving all edge lengths) and t-refinement (halving the timestep) is performed repeatedly to imitate the con-
tinuum behavior as Dh! 0 and Dt! 0. To simulate the same time duration (and thus achieve the same spec-
tral precision), the number of timesteps must be doubled each trial. But here a crime has been committed:
without removing the linear gradient solution, it cannot be guaranteed that the simulation remains stable
and non-corrupted for the increased number of timesteps. Thus, the convergence of the solution in the
Dh; Dt! 0 infinitesimal limit cannot be probed. This is the same justification given for the ‘‘tree-cotree’’
[15] stabilization process used to solve the ‘‘low-frequency instability’’ [16] problem in frequency domain finite
elements. Many useful problems can be analyzed without the use of tree-cotree but severe ill-conditioning in
the Dh! 0 limit will make convergence study impossible. Late-time instability in the time domain and low-
frequency instability in the frequency domain are closely related.

The next three sections will introduce and demonstrate a tractable strategy for eliminating late-time insta-
bility. It will be shown that removing the linear growth term is inexpensive although it prevents the FETD-
Newmark method from modeling stable gradient modes (x).

7. Discrete gradient operator

Although the vectors sn provide an orthonormal basis for the nullspace of S, diagonalization is an imprac-
tical strategy for computing them. Fortunately, a linearly independent (although not orthogonal) basis for this
space can be generated through the E�N gradient incidence matrix, G0 (41).
G0i;j ¼
þ1 Edge i points into Nodeset j;

�1 Edge i points out of Nodeset j;

0 Edge i and Nodeset j are not incident:

8><
>: ð41Þ
When assembling G0, nodes connected by PEC surfaces are renumbered and combined into ‘‘Nodesets’’, which
are characterized by a single scalar potential degree-of-freedom. Free standing nodes which are not affixed to
PEC surfaces are themselves Nodesets of cardinality one.

This concept is familiar from discrete lattice electromagnetism literature [17] or FEM potential-based
ð~A� V Þ formulations [18]. Notably, SG0 ¼ 0, indicating that each column fg1; g2; . . . ; gNg of G0 is an E� 1
vector in the nullspace of S. However, recalling that one free node is assigned a reference potential it is clear
that G0 has one extra, redundant column vector. Any of them can be discarded, we will define the last node of
the domain as a zero potential ground and discard the last column of G0. In ‘‘matlab’’ notation, define
G ¼ G0ð:; 1 : N� 1Þ ¼ ½g1; g2; . . . ; gN�1�.
8. Correcting instability

Previous efforts to remove linear instability by isolating the gradient subspace are present in the literature
[19,20]. These efforts have focused on prohibiting the gradient mode from ever existing in the state vector by
constraining the Krylov space sequence during CG solution. The computational effort required is two addi-
tional sparse matrix vector multiplies per residual computation. The proposed scheme will require an implicit
linear solve step, but can be applied infrequently (once every several hundred timesteps) and still recover the
correct, stable solution. Samples in between corrections may still possess gradient errors.
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First, an important observation [21] must be made about how the similarity transform matrix T
1
2 changes

the orthogonality properties of the eigenvectors sn and dm. Recalling that ~sn and ~dm were orthogonal vectors

(7), it is clear that the vectors sn ¼ ðT�
1
2Þ~sn and dm ¼ ðT�

1
2Þ~dm are orthogonal if a new inner product is defined as

ha; biT ¼ aTTb. Since T is a positive definite matrix, this is a valid inner product.
hdm; sniT ¼ dT
mTsn ¼ ~dm

T T�
1
2

� 	
T T�

1
2

� 	
~sn ¼ ~dT

m
~sn ¼ 0: ð42Þ
Since the columns of the Jordan transformation matrix V ¼ Z~V are linearly independent, they form a com-
plete basis for spanning the FETD-Newmark state space. Consider the decomposition of an arbitrary state
vector (43).
ekþ1

ek

� �
¼

XE�Nþ1

m¼1

am
amdm

dm

� �
þ bm

aH

m dm

dm

� �� �
þ
XN�1

n¼1

cn
sn

sn

� �
þ
XN�1

n¼1

dn
sn

0

� �
: ð43Þ
To correct late time instability we seek to isolate the electrostatic components of the ekþ1 and ek samples
and subtract them out, while leaving the electrodynamic components unchanged. While this will prevent
the FETD-Newmark method from modeling stable gradient fields (they will be ‘‘shorted out’’ at regular
intervals by the correction step), they are of little practical interest in most simulations. Consider the
ekþ1 sample first (44).
ekþ1 ¼
XE�Nþ1

m¼1

amamdm þ bmaH

m dm

� �
þ z; z ¼

XN�1

n¼1

ðcn þ dnÞsn ð44Þ
Here all the electrostatic components have been lumped together into an unknown vector z. Next a change of
basis is employed. Because z is a linear combination of sn vectors, it is a member of the nullspace of S. We
already possess a set of linearly independent vectors which span the nullspace of S and can be computed effi-
ciently, the set fg1; g2; . . . ; gN�1g. There must exist a linear combination of g vectors which yields the z vector
(45).
ekþ1 ¼
XE�Nþ1

m¼1

ðamamdm þ bmaH

m dmÞ þ
XN�1

i¼1

pigi: ð45Þ
Here, pi stands for potential. This correction step is trying to deduce the scalar potentials that would have to
exist to at each node in order to generate the pure-gradient field z. One constraint for finding the N� 1 un-
known pi’s may be generated by taking the T-inner product of (45) with another member of the nullspace of S,
gj. This is the key step for isolating the electrostatic and electrodynamic components of ekþ1-each quantity
dT

mTgj must be zero. Since gj is a member of the nullspace of S, it is a summation of sn vectors and every
of them is T-orthogonal to any dm vector.
ðekþ1ÞTTgj ¼
XE�Nþ1

m¼1

amamdT
mTgj þ bmaH

m dT
mTgj

� �
þ
XN�1

i¼1

pig
T
i Tgj: ð46Þ
When expanded out, Eq. (46) looks like a single row of a matrix equation for the N� 1 unknown pi’s.
gT
0 Tgj

� �
� p0 þ ðgT

1 TgjÞ � p1 þ � � � ðgT
N�1TgjÞ � pN�1 ¼ ðekþ1ÞTTgj: ð47Þ
Testing ekþ1 with each gj will yield an N� 1 by N� 1 matrix equation.
ðGTTGÞp ¼ GTTekþ1: ð48Þ

It is straightforward to prove that GTTG is positive definite and therefore invertible. Consider the quadratic
form W ¼ pTGTTGp – this quantity is a measure of the electrostatic energy associated with the scalar poten-
tial values p. Since T is a positive definite matrix, W P 0, and only zero if the vector Gp ¼ 0. Recalling that G

computes differences in potential among adjacent nodes it is clear that it will only generate an all zero vector if
each node has the same potential and they are all equal to the reference potential, which is assumed zero. That
is, Gp is zero if and only if p ¼ 0. Subsequently pTGTTGp > 0 if p 6¼ 0, indicating positive definiteness. The
system is straightforward to solve, either directly or iteratively. Upon solving for the unknown pi coefficients,
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the vector z ¼ Gp can be subtracted from ekþ1 to create a new state ekþ1, valid which has only stable electro-
dynamic components. The same strategy is used to remove the gradient components from the ek sample, com-
pleting the correction algorithm.
ekþ1;valid ¼ ekþ1 �GðGTTGÞ�1
GTTekþ1; ð49Þ

ek;valid ¼ ek �GðGTTGÞ�1
GTTek: ð50Þ
The correction step (49) and (50) involves two linear solves, so it is roughly equal in computational com-
plexity as two FETD-Newmark update cycles. However, since correction removes all the accumulated erro-
neous gradient fields, it does not need to be applied every update. In practical simulations, the correction
step should be applied ‘‘often enough’’ that the contribution of the linear gradient mode to the total field
remains at essentially noise level. A fixed number of bits is used to represent the sum of both the true elec-
trodynamic response and spurious gradient mode. If no gradient removal is ever performed, the relative
contribution of the gradient solution can grow so large that all significant bits are used to represent it
and the desired electrodynamic response is essentially at machine-noise level. Though it would require a
staggering number of timesteps, the growing gradient solution can even exhaust the range of floating point
exponents and the total field must be represented as the ‘‘infinity’’ bit pattern. At that point, the simulation
contains no information.

These are extreme outcomes that can be avoided by applying gradient field removal often enough that it
provides negligible contribution to the total field. It is likely that ‘‘often enough’’ is problem specific, because
it depends upon the conditioning of the amplification matrix. Floating point precision of underlying hardware
and the residual tolerance of the iterative linear solve step will also be factors in determining the optimum cor-
rection frequency. In the upcoming numerical experiments, a CG residual tolerance of � ¼ 10�9 and correction
frequency of once every 1000 timesteps will be shown to be a good rule of thumb to keep the gradient con-
tribution at noise level for a sample problem.

9. Numerical experiments

To validate the Jordan form analysis presented here, a small but nontrivial PEC spherical cavity problem
was investigated using the FETD-Newmark scheme. A cutaway depiction of a radius 1 meter discretized
sphere [22] appears in Fig. 2. The mesh contains E ¼ 2871 free edges and N ¼ 341 free nodes. In all exper-
iments, the implicit update was performed using the CG method, the problem is sufficiently small that no pre-
conditioner was used.
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Fig. 2. Test geometry – air-filled sphere with PEC boundary.
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9.1. Experiment 1 – generation and cancellation of instability

This experiment verifies that late-time stability exists and the correction scheme of Section 8 eliminates it.
Although the former is not in doubt among practitioners, it must be shown that the Jordan analysis has iden-
tified the correct form of a state vector which can exhibit growth. The sphere is initialized at rest and energized
with pure electrodynamic energy, almost all of which is above the cutoff frequency of the cavity. The system is
advanced in time with a tight relative residual tolerance � ¼ 10�9. At each timestep, a discrete electric energy
quantity We is measured and plotted in Fig. 3
We ¼ eT
kþ1Tekþ1 þ eT

k Tek: ð51Þ
Since this quantity is not explicitly conserved from one timestep to the next, there is ‘‘jitter’’ in the plot and a
need to low pass filter or average the energy history.

At t = 800 steps, a defective state is generated by perturbing ekþ1 with a random gradient field. This intro-
duces a difference between the gradient components among ekþ1 and ek, so the complete state contains unsta-
ble gradient-producing modes (y’s). The energy added is minuscule (no significant jump in energy norm
appears at t = 800 steps), but growth behavior soon emerges. Although the spurious gradent electric field is
expected to grow linearly, the chosen energy metric is proportional to field intensity squared and thus exhibits
quadratic growth. At t = 1600 steps, the correction algorithm is applied, which halts the growth behavior and
restores the energy norm to the correct pure-electrodynamic level by removing the accumulated gradient field
components. If no correction is applied, fields and energy continue to diverge.

9.2. Experiment 2 – cancellation of stable gradient modes

This experiment emphasizes that not all gradient fields are inherently unstable. Once more a sphere at
rest is energized with electrodynamic energy and perturbed with gradient fields at t = 800 steps (Fig. 4).
However, for this experiment both ek and ekþ1 are perturbed with the same random gradient field.
Although a large field is added (note the jump in energy norm) the complete state is not defective, it only
has stable gradient components (x’s). No growth occurs, but when correction is applied at t = 1600 steps
the gradient fields are removed and only electrodynamic energy remains. It is unfortunate that stable gra-
dient modes are removed, because they are Maxwellian solutions to the vector wave equation. However,
they are of little practical interest in most scattering and radiation simulations. Feed structures which sup-
port TEM modes are a notable exception (coaxial cable, for instance). When exciting such a structure with
a transient pulse which has nonzero average (DC) value, the field distribution will be incorrect after the
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stabilization process is applied. The correct response possesses stable gradient mode x-components, but
they are removed.

However, if it is known that a stable gradient mode (x) should be present in the solution, it can always be
added back in after removing the unstable gradient modes (y). The operator of the simulation knows what
stable gradient field should exist (either the domain was initialized with a gradient field state or it was added
through an impressed current waveform with nonzero DC component, both of these are under direct control
of the operator) and can reintroduce it after the correction method is applied.

9.3. Experiment 3 – instability from linear solution inaccuracy

Next it shall be shown that inaccurate linear system solution can introduce instability and the suggested
correction scheme can fix this problem. The initialization step is the same as prior experiments, except the tol-
erance of the CG solve step is relaxed to � ¼ 10�5. This loss of accuracy results in growing gradient solutions
after very few timesteps (Fig. 5). The correction scheme (49), (50) is applied every 1000 timesteps. In this exper-
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Fig. 5. Stability behavior for loose CG residual tolerance.
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iment, the implicit solve for the correction step ðGTTGÞp ¼ GTTe remains � ¼ 10�9. This is hardly additional
computational expense because the correction step is executed so seldom. After every correction the energy
metric returns to the same pure-electrodynamic level, indicating that the gradient modes are reliably removed.

9.4. Experiment 4 – preventing late time instability in practical simulations

The previous experiment demonstrated that loose tolerance for an iterative solver causes growing gradient
fields to emerge after very few timesteps. Applying the correction scheme removes the gradient field, but the
energy history still exhibits an erroneous ‘‘sawtooth’’ shaped artifact that corrupts the flat electrodynamic
response. This is unacceptable in practical computations. To remove the sawtooth artifact, the tolerance
for the implicit update solve and the frequency of gradient removal should be chosen such that the gradient
solution is not given sufficient time to grow above a noise level. Here we perform the same cavity simulation,
using a residual tolerance of � ¼ 10�9. When iterated without gradient correction, the simulation diverges at
approximately 50,000 timesteps, but when gradient correction is applied every 1000 timesteps, the average
energy response is indistinguishable from a flat line. A sawtooth component is certainly present in this wave-
form, but the frequent gradient correction prevents it from growing to any significant size before being
removed. Its contribution to the total energy is negligible. Fig. 6 also demonstrates that using tighter residual
tolerance only pushes the instability problem further into future, and cannot remove it completely. Unstabi-
lized simulations with tolerances of � ¼ 10�10 and � ¼ 10�11 are shown to diverge after 80,000 and 300,000
timesteps, respectively. The stabilized � ¼ 10�9 simulation maintains stability up to 2.5 million timesteps, at
which point the experiment is halted.

10. Conclusions

In this paper, the amplification matrix of the FETD-Newmark algorithm has been thoroughly dissected by
deducing its Jordan canonical form. It has been demonstrated that the FETD-Newmark supports linearly
growing pure-gradient fields which are non-physical despite the fact that they satisfy the underlying continuum
vector wave equation. The Jordan form aided the derivation of a correction scheme for removing gradient
fields by exploiting the T-orthogonality of the electrostatic and electrodynamic eigenspaces. Removing the
gradient field is not needed for many practical problems of short duration, but simulations which require long
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times to be integrated can eventually become overwhelmed with growing gradient modes causing a loss of pre-
cision in the desired electrodynamic response. The correction scheme was validated via numerical experimen-
tation on a small but non-trivial PEC spherical cavity problem.
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